home / data

mltest

24 rows

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: Author, Rating , Notes, Animated/Interactive, Paper Link, Blog Link, Drive Link, Glitch Link, MNIST, ImageNet, CIFAR, Tensorflow, TensorflowJS, ConvNetJS, Numpy, Colab, Glitch, Python, JavaScript, CNN, MLP, Transformer, Image, NLP, Classification

Link rowid ▼ Accension Name Author Rating Notes Animated/Interactive Demo Link Paper Link Blog Link Drive Link Glitch Link MNIST ImageNet CIFAR Other Tensorflow TensorflowJS Torch ConvNetJS SciKit Numpy Colab Glitch Python JavaScript CNN MLP Transformer RNN Image NLP Classification
1 1 1 Classify MNIST digits with a Convolutional Neural Network Karpathy 5   TRUE https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html         TRUE             TRUE       TRUE   TRUE TRUE       TRUE    
2 2 2 Classify CIFAR-10 with Convolutional Neural Network Karpathy 5   TRUE https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html             TRUE         TRUE       TRUE   TRUE TRUE       TRUE    
3 3 3 ConvNetJS Deep Learning in your browser Karpathy 5   TRUE https://cs.stanford.edu/people/karpathy/convnetjs/         TRUE TRUE           TRUE           TRUE         TRUE   TRUE
4 4 4 Tensorflow Playground   5 Stores a specific NN in the url TRUE https://playground.tensorflow.org/ https://arxiv.org/abs/1708.03788 https://cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground                           TRUE   TRUE             TRUE
5 5 5 Looking inside a digit recognizer   4 Demo of Tfjs-Vis   https://storage.googleapis.com/tfjs-vis/mnist_internals/dist/index.html       https://glitch.com/edit/#!/looking-inside-mnist-demo?path=README.md%3A7%3A73 TRUE         TRUE           TRUE   TRUE         TRUE    
6 6 6 Softmax Demo   3 Google Sheet TRUE https://docs.google.com/spreadsheets/d/1A0jMJD4rw1it2S8s7Qv7VWADZnD18d8bs3KwPtyBPzg/edit?usp=sharing                                                 TRUE
7 7 7 Deep Visualization Toolbox Yosinski 4 I would like to use this since it takes realtime input from a camera but installing it is involved. The video is worth watching. It uses a pre-trained network similar to AlexNet TRUE https://yosinski.com/deepvis https://arxiv.org/abs/1506.06579                               TRUE           TRUE   TRUE
8 8 8 Teachable Machine   5   TRUE https://teachablemachine.withgoogle.com/ https://dl.acm.org/doi/10.1145/3334480.3382839         TRUE       TRUE           TRUE   TRUE TRUE       TRUE   TRUE
9 9 9 A Neural Network in 11 lines of Python Trask 4 A bare bones neural network implementation to describe the inner workings of backpropagation. Uses Numpy   https://glitch.com/edit/console.html?minimal-ml-nn-11-lines-python-code                           TRUE TRUE TRUE TRUE                
10 10 10 No hidden layer MNIST Shook 5 Show that a 10 neuron classifier can do pretty well on MNIST   https://colab.research.google.com/drive/1HlIyYxVI2qszE4P0siZ9w2-ALDORvtV6   https://hyp.is/BFsmSC1EEey18PemMVxPpA/cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground https://colab.research.google.com/drive/1HlIyYxVI2qszE4P0siZ9w2-ALDORvtV6   TRUE       TRUE         TRUE TRUE   TRUE           TRUE    
11 11 11 Word2Vec   4 JSON weights. This is fun because it's so easy to understand what it's doing. It's all JavaScript. The weights are in a JSON file. There's no training. That's already been done to create the weights. TRUE https://turbomaze.github.io/word2vecjson/ https://github.com/turbomaze/word2vecjson     https://glitch.com/edit/#!/word2vec-demo-no-libs                           TRUE              
12 12 12 MNIST Digit Recognizer Deotte 4 JSON weights. TRUE https://www.ccom.ucsd.edu/~cdeotte/programs/MNIST.html       https://glitch.com/edit/#!/mnist-digit-recognizer?path=MNIST.html%3A644%3A35 TRUE                     TRUE   TRUE         TRUE    
13 13 13 Neural Network Playground Deotte 5 Simpler than Tensorflow Playground TRUE https://www.ccom.ucsd.edu/~cdeotte/programs/neuralnetwork.html                                   TRUE             TRUE
14 14 14 Classifier Playground Deotte 3   TRUE https://www.ccom.ucsd.edu/~cdeotte/programs/classify.html                                   TRUE             TRUE
15 15 15 Universal Sentence Encoder   3 Minimal   https://hpssjellis.github.io/beginner-tensorflowjs-examples-in-javascript/tfjs-models/universal-sentence-encoder/index.html https://arxiv.org/abs/1803.11175     https://glitch.com/edit/#!/universal-sentence-encoder-demo?path=README.md%3A1%3A0                           TRUE     TRUE     TRUE  
16 16 16 CNN Explainer   4 Learn Convolutional Neural Network (CNN) in your browser! TRUE https://poloclub.github.io/cnn-explainer/ https://arxiv.org/abs/2004.15004 https://github.com/poloclub/cnn-explainer         TRUE     TRUE               TRUE TRUE       TRUE   TRUE
17 17 17 Deep Convolustional Neural Net   4 In Google Sheets TRUE https://docs.google.com/spreadsheets/d/1SwfVctd4TjdN2S8BL09ktpQN_41sARYzD3NEHyr-8Z0/edit?usp=sharing   https://towardsdatascience.com/building-a-deep-neural-net-in-google-sheets-49cdaf466da0 https://docs.google.com/spreadsheets/d/1_0a6MkcGNvWOkI6hYqrm-ZAyxQD3e9xgzLdWgNp5a2E/edit?usp=sharing   TRUE                           TRUE       TRUE   TRUE
18 18 18 MLP-Mixer, gMLP, FNET Khalid Salama 3 MLP-Mixer, FNet, and gMLP models for CIFAR-100 image classification., It is to show simple implementations of their main building blocks.   https://keras.io/examples/vision/mlp_image_classification/ https://arxiv.org/abs/2105.01601   https://colab.research.google.com/drive/1gJj2xAiexNj99po95uRFesc0ek-wZwER#scrollTo=czIFW9bQcj_M       TRUE   TRUE           TRUE   TRUE     TRUE     TRUE   TRUE
19 19 19 MLP-Mixer image classification   3 MLP-Mixer   https://colab.research.google.com/github/sayakpaul/MLPMixer-jax2tf/blob/main/classification.ipynb https://arxiv.org/abs/2105.01601 https://tfhub.dev/sayakpaul/mixer_b16_i1k_classification/1 https://colab.research.google.com/drive/1I2-x_P0P9uFzF2NzhtQWho4dokIlD9F9?usp=sharing                                            
20 20 20 CS231n Convolutional Demo   5 Great demo! It helped me understand CNN details TRUE https://cs231n.github.io/convolutional-networks/#:~:text=architectures%20section%20below.-,Convolution%20Demo,-.%20Below%20is%20a   https://cs231n.github.io/convolutional-networks/                                 TRUE       TRUE    
21 21 21 Minimal Bert Q&A demo   3 Take quite a few seconds to get results   https://bert-qna.glitch.me/   https://github.com/tensorflow/tfjs-models/tree/master/qna   https://glitch.com/edit/#!/bert-qna           TRUE           TRUE   TRUE     TRUE     TRUE  
22 22 22 ECCO readme.md examples.ipynb Alammar 4   TRUE https://colab.research.google.com/github/jalammar/ecco/blob/main/notebooks/readme.md%20examples.ipynb https://aclanthology.org/2021.acl-demo.30/   https://docs.google.com/spreadsheets/d/1KALWW9jxoicGoos-kAhDAsET94hY6Oo85EVsl_9StwI/edit?usp=sharing                       TRUE   TRUE       TRUE     TRUE TRUE
23 23 23 Interfaces for Explaining Transformer Language Models Alammar 5 Uses Ecco TRUE https://jalammar.github.io/explaining-transformers/ https://aclanthology.org/2021.acl-demo.30/                               TRUE TRUE     TRUE     TRUE TRUE
24 24 24 05- Neuron Factors.ipynb Alammar 5 Uses Ecco TRUE https://colab.research.google.com/github/jalammar/ecco/blob/main/notebooks/Ecco_Neuron_Factors.ipynb https://aclanthology.org/2021.acl-demo.30/                           TRUE   TRUE       TRUE     TRUE  

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE [mltest] (
   [Accension] TEXT,
   [Name] TEXT,
   [Author] TEXT,
   [Rating ] TEXT,
   [Notes] TEXT,
   [Animated/Interactive] TEXT,
   [Demo Link] TEXT,
   [Paper Link] TEXT,
   [Blog Link] TEXT,
   [Drive Link] TEXT,
   [Glitch Link] TEXT,
   [MNIST] TEXT,
   [ImageNet] TEXT,
   [CIFAR] TEXT,
   [Other] TEXT,
   [Tensorflow] TEXT,
   [TensorflowJS] TEXT,
   [Torch] TEXT,
   [ConvNetJS] TEXT,
   [SciKit] TEXT,
   [Numpy] TEXT,
   [Colab] TEXT,
   [Glitch] TEXT,
   [Python] TEXT,
   [JavaScript] TEXT,
   [CNN] TEXT,
   [MLP] TEXT,
   [Transformer] TEXT,
   [RNN] TEXT,
   [Image] TEXT,
   [NLP] TEXT,
   [Classification] TEXT
);
Powered by Datasette · Queries took 129.787ms